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Abstract
We study the fluctuations of the position of an impurity in the asymmetric
exclusion process on a ring with an arbitrary number of particles and holes.
The steady state of this model is exactly known and four different phases
appear in the limit of a large system. We calculate the diffusion constant of
the impurity by using a matrix product method and also obtain a representation
for unequal time correlation functions. We show that our results found by the
matrix ansatz agree with those obtained previously by the Bethe ansatz.

PACS numbers: 05.50.+q, 05.60.Cd, 66.30.Lw

1. Introduction

The one-dimensional asymmetric simple exclusion process (ASEP) is a model of driven
diffusive particles on a lattice with hard-core exclusion. The ASEP appears as a minimal
building block in different models that describe a large variety of physical phenomena such
as growth processes (the ASEP is a discrete version of the KPZ equation [1]), hopping
conductivity [2], diffusion of particles through narrow pores, polymer reptation and traffic
flow [3–5]. From a theoretical point of view the ASEP, as a member of the class of driven
diffusive particle systems [6, 7], is a key model for the study of non-equilibrium statistical
mechanics. In particular, it is one of the very few systems, far from equilibrium, for which
exact solutions have been obtained and a large body of knowledge has been gathered in the
last decade (for recent reviews, see [8, 9]). The ASEP can be studied with the help of many
different methods ranging from probability theory [10, 11] to integrable systems techniques
[12, 13] and random matrix theory [14].
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A breakthrough in the study of the ASEP resulted from the introduction of the ‘matrix
product ansatz’ [15] in which steady-state weights are expressed as matrix elements. With
this technique, many steady-state properties such as the current, the density profile and
non-equilibrium analogues to the free energy [16] can be exactly calculated. Due to its
algebraic character, this method has also triggered the study of diffusion algebras that appear in
general reaction–diffusion processes [17, 18]. These exact calculations provide a quantitative
understanding of a large range of phenomena such as non-equilibrium phase transitions,
symmetry breaking in one dimension [19], travelling and diffusing shocks [20] etc. The
matrix product ansatz has also been used to calculate steady states for exclusion processes with
second-class [21–23] and third-class particles [24]. The introduction of different species of
particles allows us to localize a shock [25] (it corresponds mathematically to coupling identical
systems [26]).

The presence of a defect in the ASEP can generate a shock dynamically. For example,
a defective bond can induce a separation between a dense phase and a fluid phase [27].
However, such a model has not been solved analytically. A moving impurity may also
induce a shock in the stationary state [29, 30]. A traffic-flow picture illustrates this fact:
if particles represent cars and the defect a truck (which moves at a slow speed and is hard
to overtake), then the shock corresponds to a traffic jam. The phase transition to a shock
can also be interpreted as a dynamical version of Bose–Einstein condensation [28]. The
position of the shock can be identified as the position of the truck itself; as such the location
of the truck is a random variable that carries statistical information on the whole ensemble
of particles. For example, the mean value of the location of the truck grows linearly with
time, at long times, and thus allows us to define a mean velocity v of the truck. This scalar
quantity v can be chosen as an order parameter: in the limit of large systems, changes in
the analytic behaviour of v characterize phase transitions and allow us to define a phase
diagram.

In this work, we study the fluctuations of the position of the shock in a system
with a moving impurity around its mean value and calculate the associated diffusion
constant. The diffusion constant is related to unequal time correlation functions in the
stationary state. We shall obtain an explicit expression for these correlation functions.
The diffusion constant has been found using the Bethe ansatz in [34]. However, the
correlation functions, which are formally a linear combination of eigenvectors, have not
been calculated from the Bethe ansatz. We show that the diffusion constant of an impurity can
be calculated by a generalization of the matrix ansatz method that involves a suitable quadratic
algebra. Our method generalizes the techniques used in [31–33] to study the diffusion of
a tracer. The expressions we obtain can be identified with those derived using the Bethe
ansatz.

The plan of this paper is as follows. In section 2, we define the model, discuss the
properties of the steady state, describe the matrix ansatz for the stationary probabilities,
recall the phase diagram, and derive a formal expression for the diffusion constant �
in terms of some generalized weights. In section 3, we find a matrix ansatz for the
generalized weights with the help of a new quadratic algebra and through a suitable
regularization of the traces of this algebra. This allows us to express � as a linear
combination of traces. In section 4, we calculate these traces and obtain a formula for
the diffusion constant. Section 5 is devoted to a physical discussion of the properties of � in
different parts of the phase diagram, and of the relation between the generalized weights
and unequal time correlation functions. Concluding remarks appear in section 6. The
appendices contain some useful mathematical identities and some derivations used in the
main text.
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2. The stationary state

We consider the model that was introduced and studied in [29, 30]. This model is defined on
a ring of L + 1 sites, numbered from 0 to L, with P particles (denoted by 1) and one impurity
(denoted by 2) that hops with rate α � 1 and can be overtaken by other particles with rate
β � 1. Each site i is either occupied by a normal particle or by the impurity, or it is empty.
Stochastic dynamical rules govern the evolution of the system and during the infinitesimal
time step dt , a bond (i, i + 1), with 0 � i � L, evolves as follows,

10 → 01 with rate 1

20 → 02 with rateα (1)

12 → 21 with rateβ

where an empty site is represented by 0. All other transitions are forbidden. These rules define
a Markov process and the evolution of the system is governed by the master equation

dPt(C|C0)

dt
=
∑
C′

M(C,C ′)Pt (C ′|C0). (2)

Here C0 is the initial configuration and the Markov (or the incidence) matrix M(C,C
′
)

encodes the transition rates between configurations. We shall work in the relative frame of the
impurity unless the contrary is specified, i.e. we use the translation invariance of the system to
relabel the sites, so that the impurity always remains on site number 0. The system has thus(
L

P

) = L!
P !(L−P )! configurations.

In the long time limit, the system reaches a stationary state in which each configuration
C has a stationary probability (or weight) p(C). The stationary weights are solutions of the
stationary master equation,∑

C′
M(C,C ′)p(C ′) = 0. (3)

2.1. Matrix ansatz for the stationary probabilities

The computation of the stationary probabilities is non-trivial. As shown in [29, 30], p(C) can
be expressed as a trace of a matrix product involving non-commuting operatorsD,E and A,

p(C) = 1

ZL,P
Tr

(
A

L∏
i=1

(τiD + (1 − τi)E)

)
(4)

where τi(C) = 1 if site i is occupied by a particle in the configuration C and τi(C) = 0 if it is
empty. The normalization factor ZL,P ensures that the sum of all probabilities is equal to 1.

The matricesD,E and A satisfy the following algebra:

DE = D + E DA = 1

β
A AE = 1

α
A. (5)

These matrices have to be infinite dimensional unless α + β= 1 [15]. A suitable representation
of algebra (5) is

D =




1 1 0 0 . .

0 1 1 0
0 0 1 1
0 0 0 1 .

. . .

. .




E =




1 0 0 0 . .

1 1 0 0
0 1 1 0
0 0 1 1
. . .

. . .




A = |β〉〈α| (6)
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Figure 1. The phase diagram of the ASEP with an impurity.

where

〈α| = κ

(
1,

1 − α

α
,

(
1 − α

α

)2

, . . .

)
|β〉 = κ




1
1−β
β(

1−β
β

)2

...




with κ2 = α + β − 1

αβ
.

(7)

2.2. The phase diagram

The phase diagram is obtained in the large system limit, L → ∞, while keeping the density
P/L of the particles constant [30]. We recall briefly the results derived in [29, 30]. There are
four principal phases. Transitions between different phases are characterized by non-analytic
behaviour of the speed v of the impurity (in the reference frame of the lattice) and of the
current J of the particles. Divergent correlation lengths are associated with the transitions.
The speed of the impurity can be expressed in terms of the normalization factor [30]

v = ZL−1,P − ZL−1,P−1

ZL,P
. (8)

The four phases are described as follows (see figure 1):

• For ρ < β and ρ < 1 − α, the defect behaves essentially as a hole with J = ρ(1 − ρ)

and v = α − ρ.
• For β < ρ and 1 − α < ρ, the defect behaves essentially as a normal particle and
J = ρ(1 − ρ) and v = 1 − β − ρ.

• For 1 − α < ρ < β, the defect is similar to a second class particle [21]; the density
profile is uniform and the defect lowers the average speed of the particles. One has
J = ρ(1 − ρ) and v = 1 − 2ρ.
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• For β < ρ < 1 − α, the density profile presents a shock; the particles cannot easily
overtake the defect and are blocked behind it. A single local defect induces a global phase
separation in the system. Here, J = ρ(α − β) + β(1 − α) and v = α − β.

2.3. Calculation of the normalization factor

The phase diagram was obtained in [30] from an asymptotic analysis of the normalization
factor ZL,P defined in equation (4). This factor can also be expressed as a trace,

ZL,P = Tr(AGL,P ) = 〈α|GL,P |β〉 (9)

where GL,P is the sum of all matrices formed by multiplying P matrices D and (L − P)

matrices E in all possible orders, i.e.

GL,P =
∑
τi=0,1

δ

(
P −

L∑
i=1

τi

)
L∏
i=1

(τiD + (1 − τi)E). (10)

The matrix elements of GL,P are [30, 31]

〈x ′|GL,P |x〉 =
(
L

P

)(
L

P + x ′ − x

)
−
(

L

P + x ′

)(
L

P − x

)
. (11)

The normalization factor ZL,P can be calculated using these matrix elements as follows [30].
Starting from equation (9), we find

ZL,P

κ2
=

∞∑
x′,x=1

ax
′−1bx−1

(
L

P

)(
L

P + x ′ − x

)
− ax

′−1

(
L

P + x ′

)
bx−1

(
L

P − x

)
(12)

where we have defined

a = 1 − α

α
and b = 1 − β

β
. (13)

We now introduce polynomial functions that generalize the binomial coefficients. These
functions will play an important role in the calculation of the diffusion constant:

ML,P =
∞∑
k=0

ak
(

L + 1
P + k + 1

)
(14)

NL,P =
∞∑
k=0

bk
(
L + 1
P − k

)
(15)

XL,P = 1

1 − α − β

(
ML−1,P−1 +

1 − β

β
NL−1,P−1

)
. (16)

Inserting these definitions in equation (12), we obtain

ZL,P = 1 − α − β

αβ

(
αβ

(
L

P

)
XL,P +ML−1,P NL−1,P−1

)
(17)

where we have used the identity proved in [30]:

∞∑
x′,x=1

ax
′−1bx−1

(
L

P + x ′ − x

)
= −αβXL,P . (18)
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Using the first equality of equation (A2), we eliminate the binomial coefficient from
equation (17) and obtain

ZL,P = 1 − α − β

αβ

(
αβ

(
NL,P − NL−1,P−1

β

)
XL,P +ML−1,PNL−1,P−1

)

= 1 − α − β

αβ
(NL−1,P−1(ML−1,P − αXL,P ) + αβNL,PXL,P )

= (1 − α − β)(NL,PXL,P −NL−1,P−1XL+1,P+1). (19)

The last equality was obtained from equation (A4). Now expressing the function XL,P in
terms ofML,P andNL,P (see equation (A3)), and using the Pascal triangle relations, we obtain
the following identities for ZL,P :

ZL,P = ML−1,P−1NL,P −ML,PNL−1,P−1

ZL,P = ML,PNL−1,P −ML−1,PNL,P (20)

ZL,P = ML−1,P−1NL−1,P −ML−1,PNL−1,P−1.

Using these identities in equation (8), we obtain an alternative expression for v:

v = (NL−1,PML−2,P−1 −ML−1,P NL−2,P−1)− (ML−1,P−1NL−2,P−1 −ML−2,P−1NL−1,P−1)

ZL,P

= NL,PML−2,P−1 −ML,PNL−2,P−1

ZL,P
. (21)

The derivatives of ML,P and NL,P will also be necessary for our calculations:

M̃L,P = dML,P

da
=

∞∑
k=0

(k + 1)ak
(

L + 1
P + k + 2

)
(22)

ÑL,P = dNL,P
db

=
∞∑
k=0

(k + 1)bk
(

L + 1
P − k − 1

)
. (23)

The functionsML,P ,NL,P ,XL,P , M̃L,P and ÑL,P satisfy many remarkable combinatorial
identities and particularly the Pascal triangle recursion (i.e. ML,P = ML−1,P + ML−1,P−1).
Other useful identities are given in appendix A.

2.4. Generalized stationary weights

The diffusion constant of the impurity will be calculated following the method explained in
[31, 33]. Let Yt be the random variable representing the total distance travelled by the impurity
between times 0 and t. The long time behaviour of 〈Yt |C〉, the average of Yt over all histories
starting with the initial configuration C, is given by [33]

〈Yt |C〉 → vt + s(C). (24)

The memory of the initial configuration is kept in the subdominant term s(C) that provides a
set of generalized weights associated with each configuration and which are related to unequal
time correlation functions (see section 5.3). We shall denote the average of Yt in the stationary
state by 〈Yt 〉,

〈Yt 〉 =
∑
C

〈Yt |C〉p(C). (25)

From the asymptotic behaviour (24), we deduce

〈Yt |C〉 − 〈Yt 〉 → s(C)−
∑
C
s(C)p(C). (26)
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In order to derive the linear equations satisfied by the generalized weights s(C), we start with
the backward master equation for the joint probability Pt (Y, C|C0),

d

dt
Pt (Y, C|C0) =

∑
C1

Pt (Y, C|C1)M0(C1, C0) + Pt (Y − 1, C|C1)M1(C1, C0)

+Pt(Y + 1, C|C1)M−1(C1, C0) (27)

where M−1(C1, C0), M0(C1, C0) and M1(C1, C0) are rates for transitions from C0 to C1 in
which the impurity is overtaken by a normal particle does not move or hops forward.

The equation for the time evolution of the average 〈Yt |C〉 follows from (27). Inserting the
asymptotic behaviour (24) in equation (27) leads to the master equation for the generalized
weights, ∑

C1

s(C1)M(C1, C0) = v −
∑
C1

(M1(C1, C0)− M−1(C1, C0)) (28)

where

v =
∑
C1,C0

p(C0)(M1(C1, C0)− M−1(C1, C0)). (29)

Hence, the generalized weights s(C) can be calculated by solving a linear system of
inhomogeneous equations. We note that the left-hand side of equation (28) is dual to the
left-hand side of equation (3). The weights s(C) are uniquely defined by the system (28) except
for an additive constant that corresponds to a change in the origin of time in equation (24).

2.5. Formal expression of the diffusion constant

Time evolution of the variance of Yt is deduced from equation (27):

d
(〈
Y 2
t

〉− 〈Yt 〉2
)

dt
= 2

∑
C0,C1

p(C0)(〈Yt |C1〉 − 〈Yt 〉)(M1(C1, C0)− M−1(C1, C0))

+
∑
C0,C1

p(C0)(M1(C1, C0) + M−1(C1, C0)). (30)

Substituting the asymptotic behaviour (26) in equation (30) and using equation (29), we deduce
that in the long time limit the variance of Yt grows linearly with time, i.e.

〈
Y 2
t

〉− 〈Yt 〉2 → �t

where the diffusion constant� is given by

� =
∑
C0,C1

p(C0)(M1(C1, C0) + M−1(C1, C0)) + 2
∑
C0,C1

s(C1)(M1(C1, C0)

−M−1(C1, C0))p(C0)− 2v
∑
C1

s(C1)p(C1). (31)

Introducing bra and ket notations for the vectors s(C) and p(C), respectively, and defining
〈0| = (1, 1, . . . , 1), we rewrite equation (31) in a more compact form,

� = 〈0|M1 + M−1|P〉 + 2〈S|M1 − M−1|P〉 − 2v〈S|P〉. (32)

3. Quadratic algebra for the generalized stationary weights

In this section, we solve the system of equations (28) by expressing s(C) as a trace of a product
of matrices belonging to a suitably chosen quadratic algebra.
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3.1. Matrix equations

Because equations (28) defining the generalized weights are dual to those for the stationary
probabilities (3), we represent the particles by the operator E and holes by the operatorD. The
operators D and E have been defined in equations (5) and (6). The impurity will be represented
by a matrix B to be determined. We emphasize again that the ansatz for the s(C) is dual to
the usual one (the roles of D and E have been interchanged); here, D stands for a hole and E
for a particle. After substituting this ansatz in (28), we find the matrix equations that B must
satisfy,

Tr((DB + BE − DBE)WL−2,P−1) = v

Tr((αD2B − αDBD + BD − DB)WL−2,P ) = v − α

Tr((βBE2 − βEBE + EB − BE)WL−2,P−2) = v + β

Tr((αEDB + βBED − EB − BD + (1 − α − β)EBD)WL−2,P−1) = v − α + β

(33)

where the operatorWL,P represents a configuration of size L with P particles (i.e. P matrices
E) and L− P holes (i.e. L− P matrices D). A remarkable fact is that the right-hand sides in
equations (33) depend only on the total number of D and E in the configuration represented
by the operatorWL,P , but not on the order of the matrices D and E in WL,P .

3.2. A new diffusion algebra

We solve the homogeneous system associated with equations (33) by introducing a suitable
quadratic algebra. This algebra is a particular case of the general diffusion algebras studied in
[18]. Let us consider two matrices M and N that satisfy the following identities,

DM = 1

α
M +D ME = EM = 1

1 − α
M − α

1 − α
E (34)

and

ND = DN = 1

1 − β
N − β

1 − β
D NE = 1

β
N + E. (35)

The operators M and N can be expressed as functions of E andD, respectively, as follows:

M = α

∞∑
k=0

(1 − α)kEk+1 = 1 +
1

α
ε

∞∑
k=0

(
1 − α

α

)k
εk where ε = E − 1 (36)

N = β

∞∑
k=0

(1 − β)kDk+1 = 1 +
1

β
δ

∞∑
k=0

(
1 − β

β

)k
δk where δ = D − 1. (37)

Using relations (34), we verify that M satisfies the homogeneous matrix equations
associated with (33), i.e. we have

DM + ME − DME = 0

αD2M − αDMD + MD − DM = 0

βME2 − βEME + EM − ME = 0

αEDM + βMED − EM − MD + (1 − α − β)EMD = 0.

(38)

The operator N also satisfies these equations and therefore any linear combination cmM + cnN
is also a solution of equations (38).
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3.3. Matrix ansatz

In the algebra (M,N,D,E), traces are not well defined, e.g. Tr(MDE) = ∞. In this section,
we shall define a linear functional that extends the usual trace operation and leads to finite
results. With this generalized trace, we shall obtain a matrix ansatz for the generalized weights
s(C).

There are two equivalent ways to achieve this goal. Both rely on the following property of
the matrices D and E: ifW1 andW2 are two monomials of the same degree in D and E (i.e. they
contain the same number of D and the same number of E) thenW1 −W2 is a finite-rank matrix.
This property follows by recursion from the fact that the commutator [D,E] is a matrix of
finite rank. Thus, even if the traces are not well defined in the (D,E) algebra, the difference
between the traces of two operators of the same degree in D and E is a finite number.

In order to regularize the traces in the (M,N,D,E) algebra, one can use a cut-off
procedure as done in [31]: before calculating the trace of an operator, multiply it by the finite-
rank projector 1	 = ∑

i�	 |i〉〈i| with	 > L. This method allows us to define a matrix ansatz
but has the drawback of introducing a size-dependent parameter	 that makes the calculations
cumbersome.

We prefer to use here an analytic size-independent regularization. We first introduce a
regularization matrix N , function of a parameter t such that |t| < 1,

N =




1 0 0 0 · · ·
0 t 0 0 · · ·
0 0 t2 0 · · ·
0 0 0 t3 · · ·
...

...
... · · · · · ·


 . (39)

Consider now an operatorWL,P obtained from the product of P matrices E andL−P matrices
D. The following properties are true,

Tr(NMWL,P ) = ML,P

1 − t
+ lM(t;WL,P ) (40)

Tr(NNWL,P ) = NL,P

1 − t
+ lN (t;WL,P ) (41)

where lM(t;WL,P ) and lN (t;WL,P ) are finite at t = 1; the functions ML,P and NL,P were
defined in equations (14) and (15). The proof of equations (40) and (41) results from the
fact that if W1 and W2 are two operators, each being a product of P matrices E and L − P

matrices D taken in different orders, then Tr(NN(W1 −W2)) has a finite limit when t → 1
because, as explained above, (W1 − W2) is a finite-rank matrix. Therefore the singularity
of Tr(NMWL,P ) (and that of Tr(NNWL,P )) at t = 1 is independent of WL,P and can be
calculated explicitly by takingWL,P = DL−PEP .

If we now choose B to be

B = cmM + cnN with cm = NL,P

ZL,P
and cn = −ML,P

ZL,P
(42)

and take a linear combination of equations (40) and (41), we obtain

Tr(NBWL,P ) = cmML,P + cnNL,P
1 − t

+ lB(t;WL,P ) = lB(t;WL,P ) (43)

where lB = cmlM + cnlN is finite at t = 1. We have thus defined a regularized trace operation
and we shall write

Tr(BWL,P ) = lim
t→1

Tr(NBWL,P ). (44)
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The trace operation so defined is a linear functional on the matrix algebra (M,N,D,E).
However, we emphasize that this trace is not cyclic anymore. The matrix ansatz for the
generalized weights s(C) is given by

s(C) = Tr

(
B

L∏
i=1

(τi(C)E + (1 − τi(C))D)
)

(45)

where B is given by equation (42) and τi(C) = 0 or 1 according to whether site i is empty or
occupied by a particle in the configuration C. In order to prove this matrix ansatz, we must
verify that the generalized weights s(C) defined in equation (45) satisfy equations (33). In
the first equation, we have to evaluate Tr((DNB + NBE − DNBE)WL−2,P−1). Using the
following identity,

[D,N ] = (1 − t)N (1 −D) (46)

and the fact that B is a solution of the homogeneous equations (38) we deduce that
Tr((DNB + NBE −DNBE)WL−2,P−1)

= Tr(([D,N ](B − BE) + N (DB + BE − DBE))WL−2,P−1)

= (1 − t)Tr(N (1 −D)B(1 − E)WL−2,P−1)

= (1 − t)

(
cmML−2,P−1 + cnNL−2,P−1

1 − t
+ finite terms at t = 1

)
. (47)

In the t → 1 limit, equation (47) reduces to
NL,PML−2,P−1 −ML,PNL−2,P−1

ZL,P
= v. (48)

The last equality follows from equation (21). The proof of the other three equations of the
system (33) is similar and will not be given here.

3.4. The diffusion constant as a trace

We can now express the diffusion constant � as a sum of traces in the tensor product algebra
of the two quadratic algebras (A,D,E) and (B,E,D). Let GL,P denote the sum of all the
matrix products on this tensor algebra containing P matrices D ⊗ E, and L − P matrices
E ⊗D. Using the two matrix ansatze (4) and (45), we obtain the following expressions:

〈S|P〉 = 1

ZL,P
Tr((A⊗ B)GL,P )

〈S|M1|P〉 = 1

ZL,P
Tr((A⊗ DB)GL−1,P ) (49)

〈S|M−1|P〉 = 1

ZL,P
Tr((A⊗ BE)GL−1,P−1).

Substituting equations (42) and (49) in equation (32), we obtain an expression for the diffusion
constant in terms of the regularized matrix traces:

� = ZL−1,P + ZL−1,P−1

ZL,P

+
2cn
ZL,P

(−v Tr[(A⊗N)GL,P ] + Tr[(A⊗ DN)GL−1,P ]

− Tr[(A⊗ NE)GL−1,P−1])

+
2cm
ZL,P

(−vTr[(A⊗M)GL,P ] + Tr[(A⊗ DM)GL−1,P ]

− Tr[(A⊗ ME)GL−1,P−1]). (50)

Thus, to calculate �, we have to evaluate the six traces appearing in equation (50).
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4. Calculation of the diffusion constant

4.1. Matrix elements of GL,P
The key ingredients to calculate the traces in equation (50) are the matrix elements of the
‘propagator’ GL,P . These matrix elements will be found by interpreting GL,P as a random
walk generator. The identity

GL,P = GL−1,P (E ⊗D) + GL−1,P−1(D ⊗ E) (51)

leads to the following recursion relation between matrix elements,

〈y ′|〈x ′|GL,P |x〉|y〉 = 〈y ′|〈x ′|GL−1,P |x〉|y − 1〉 + 〈y ′|〈x ′|GL−1,P |x〉|y〉
+ 〈y ′|〈x ′|GL−1,P |x + 1〉|y − 1〉 + 〈y ′|〈x ′|GL−1,P |x + 1〉|y〉
+ 〈y ′|〈x ′|GL−1,P−1|x − 1〉|y〉 + 〈y ′|〈x ′|GL−1,P−1|x − 1〉|y + 1〉
+ 〈y ′|〈x ′|GL−1,P−1|x〉|y〉 + 〈y ′|〈x ′|GL−1,P−1|x〉|y + 1〉 (52)

for all x, x ′, y, y ′ � 1 with the boundary condition that a matrix element of GL,P vanishes
whenever at least one of the variables x, x ′, y or y ′ is equal to 0. The recursion relation (52) in
the total space with no boundary condition can be solved by Fourier transform and is satisfied
by the following expression:(

L

P

)(
L

P + y − y ′

)(
L

P − x + x ′

)
. (53)

In order to satisfy the boundary condition that 〈y ′|〈x ′|GL,P |x〉|y〉 vanishes when x, x ′, y or
y ′ = 0, expression (53) is antisymmetrized using the image method as was done to derive
equation (11) and we obtain

〈y ′|〈x ′|GL,P |x〉|y〉 =
(
L

P

)(
L

P + y − y ′

)(
L

P − x + x ′

)
−
(

L

P − x

)(
L

P + y − y ′

)(
L

P + x ′

)

+

(
L

P + y + x ′

)(
L

P − y ′

)(
L

P − x

)
−
(

L

P − x + x ′

)(
L

P + y

)(
L

P − y ′

)

+

(
L

P − y ′ − x

)(
L

P + y

)(
L

P + x ′

)
−
(

L

P + y + x ′

)(
L

P − y ′ − x

)(
L

P

)
.

(54)

4.2. Formula for the diffusion constant

We first explain how the traces appearing in formula (50) are calculated. In order to obtain
Tr[(A⊗N)GL,P ], we start by evaluating Tr[(A⊗ NN)GL,P ]:

1

κ2
Tr[(A⊗ NN)GL,P ]

=
∑
y,x,x′

ty−1ax
′−1bx−1

{
〈y|〈x ′|GL,P |x〉|y〉 +

1

β

∞∑
k=0

bk〈y + k + 1|〈x ′|GL,P |x〉|y〉
}
.

(55)

We shall substitute on the right-hand side of this equation the matrix element of GL,P
(equation (54)) which consists of six terms; we shall do it in a few steps. Substituting
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the first two terms of equation (54) in equation (55), we obtain

∑
y,x,x′

ty−1ax
′−1bx−1

{(
L

P

)(
L

P − x + x ′

)
−
(

L

P − x

)(
L

P + x ′

)}

×
{(

L

P

)
+

1

β

∞∑
k=0

bk
(

L

P − k − 1

)}
= 1

1 − t

ZL,P

κ2
NL,P (56)

where we have used equation (12) and the first equality of equation (A2). We now remark that
the substitution of the four remaining terms of equation (54) in the right-hand side of equation
(55) generates sums with a finite number of terms because the binomial coefficients vanish
as soon as x, x ′, y or k are greater than L. Therefore the t → 1 limit is readily obtained by
taking t = 1 directly. We now evaluate the contribution of each of these four terms one by
one. Substituting the third term of equation (54) in equation (55) leads to

∑
y,x,x′

ax
′−1bx−1

(
L

P + y + x ′

)(
L

P − x

){(
L

P − y

)
+

1

β

∞∑
k=0

bk
(

L

P − y − k − 1

)}

= NL−1,P−1

∞∑
y=1

ML−1,P+yNL,P−y (57)

where we have used equations (A1) and (A2). The substitution of the fourth term leads to

−
∑
y,x,x′

ax
′−1bx−1

(
L

P − x + x ′

)(
L

P + y

){(
L

P − y

)
+

1

β

∞∑
k=0

bk
(

L

P − y − k − 1

)}

= αβXL,P

∞∑
y=1

(
L

P + y

)
NL,P−y (58)

where we have used equations (18) and (A2). Substituting the fifth term, we obtain

∑
y,x,x′

ax
′−1bx−1

(
L

P + y

)(
L

P + x ′

){(
L

P − y − x

)
+

1

β

∞∑
k=0

bk
(

L

P − y − x − k − 1

)}

=
∞∑
y=1

ML−1,P

(
L

P + y

) ∞∑
x=1

bx−1NL,P−y−x = ML−1,P

∞∑
y=1

ÑL,P−y

(
L

P + y

)

(59)

where we have used equation (A2) to evaluate the term in braces and equation (A8) to derive
the last equality. Finally, the contribution of the last term of equation (54) is

−
∑
y,x,x′

ax
′−1bx−1

(
L

P

)(
L

P + y + x ′

){(
L

P − y − x

)
+

1

β

∞∑
k=0

bk
(

L

P − y − x − k − 1

)}

= −
(
L

P

) ∞∑
y=1

ML−1,P+yÑL,P−y (60)

where we have again used equations (A2) and (A8).



A matrix ansatz for the diffusion of an impurity in the asymmetric exclusion process 9715

From equations (55) to (60), we conclude that

1

κ2
Tr[(A⊗ NN)GL,P ]

= ZL,PNL,P

κ2(1 − t)
+

∞∑
y=1

(
NL−1,P−1ML−1,P+y + αβXL,P

(
L

P + y

))
NL,P−y

+
∞∑
y=1

(
ML−1,P

(
L

P + y

)
−
(
L

P

)
ML−1,P+y

)
ÑL,P−y. (61)

We now simplify the nonsingular part of this expression. The first sum on the rhs of
equation (61) is transformed with the help of the identity (see equation (A1))(

L

P + y

)
= ML,P+y − 1

α
ML−1,P+y (62)

and we obtain

NL−1,P−1ML−1,P+y + αβXL,P

(
L

P + y

)
= αβXL,PML,P+y − (βXL,P −NL−1,P−1)ML−1,P+y

= αβ(XL,PML,P+y −XL+1,PML−1,P+y) (63)

where the last equality follows from equation (A5). Similarly, using equation (A1) again, the
second sum on the rhs of equation (61) is written as

ML−1,P

(
L

P + y

)
−
(
L

P

)
ML−1,P+y = ML−1,PML,P+y −ML,PML−1,P+y. (64)

Thus, from equations (63) and (64) we obtain a simplified form of equation (61),

1

κ2
Tr[(A⊗ NN)GL,P ] = ZL,PNL,P

κ2(1 − t)
+
∑
y

αβ(XL,PML,P+y −XL+1,PML−1,P+y)NL,P−y

+ (ML−1,PML,P+y −ML,PML−1,P+y)ÑL,P−y

= ZL,PNL,P

κ2(1 − t)
+ αβ

∞∑
y=1

(XL,PML,P+y −XL+1,PML−1,P+y)ÑL,P−y+1

− (XL,P+1ML,P+y −XL+1,P+1ML−1,P+y)ÑL,P−y (65)

where the last equality is derived by writingNL,P−y = ÑL,P−y+1 − 1−β
β
ÑL,P−y (see equation

(A8)) and using equation (A4).
The five other traces that appear in equation (50) can be evaluated in a similar way. In

appendix B, we give the expressions of these traces, insert them in equation (50), and obtain

� = ML,PNL−2,P−1 +NL,PML−2,P−1

ZL,P
+

2(α + β − 1)

Z2
L,P

∞∑
y=1

× {cn(ZL,PML−2,P+y−1 − ZL−1,PML−1,P+y−1 − ZL−1,P−1ML−1,P+y)

× (XL+1,P ÑL,P−y+1 −XL+1,P+1ÑL,P−y)
+ cm(ZL,PNL−2,P−y−1 − ZL−1,PNL−1,P−y−1 − ZL−1,P−1NL−1,P−y)
× (XL+1,P M̃L,P+y − XL+1,P+1M̃L,P+y−1)}. (66)

We must now calculate the twelve sums that appear in this equation. In appendix C, we
calculate these sums, substitute them in equation (66), and derive the following simplified
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expression for the diffusion constant,

� = ZL−1,P−1W2L+1,2P+1 + ZL−1,PW2L+1,2P − ZL,PW2L,2P

Z3
L,P

(67)

where we have defined

WL,P = α0UL,P + α1UL,P−1 + α2UL,P−2 (68)

with

UL,P =
(

1 − β

β

)2

ÑL−1,P + M̃L−1,P−1 − 2α(1 − β)XL,P (69)

and

α0 = X2
L+1,P α1 = −2XL+1,PXL+1,P+1 α2 = X2

L+1,P+1. (70)

We thus obtain a closed formula for the diffusion constant in terms of the special functions
defined in section 2.3. We shall now relate our expression for the diffusion constant to that
derived from Bethe ansatz and discuss the physical properties of �.

5. Discussion

5.1. Two particular cases

When α = β = 1, the impurity becomes a second-class particle [21, 22]. In this case,
the matrix algebra used to calculate the diffusion constant is simpler as the matrices M and
N are identical to E and D respectively. The functions ML,P and NL,P reduce to binomial
coefficients

ML,P =
(
L + 1
P + 1

)
NL,P =

(
L + 1
P

)
ZL,P = 1

L + 1

(
L + 1
P

)(
L + 1
P + 1

)
(71)

and we obtain the following formula for the diffusion constant:

� = 1

ZL,P

1

L(2L + 1)

(2L + 2)!

(2P + 2)!(2L− 2P + 2)!
((L− 4)P (L− P) + L(2L + 1)) . (72)

This expression was first presented in [35].
Another particular case is obtained when α + β = 1 (or equivalently ab = 1). For this

choice of parameters, the stationary state is uniform, i.e. all configurations have the same
stationary probability [15, 30]. The ansatz for the p(C) reduces to A = 1,D = 1/β and
E = 1/α, whereas for the s(C) the ansatz (45) is unchanged. Thus, we have

ZL,P = 1

αL−P βP

(
L

P

)
1

α
ML,P +

1

β
NL,P = 1

αL+1−P βP

v = α − P

L

ZL−1,P + ZL−1,P−1

ZL,P
= (L− 2P)α + P

L
. (73)

Equation (50) for the diffusion constant reduces to

� = (L− 2P)α + P

L
+

2

αL−P βPZ2
L,P

{cn[αTr(DNGL−1,L−1−P )− βTr(NEGL−1,L−P )

− vTr(NGL,L−P )] + cm[αTr(DMGL−1,L−1−P )
− βTr(MEGL−1,L−P )− vTr(MGL,L−P )]} (74)
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where GL,P has been defined in equation (10) and its matrix elements are given in
equation (11). Here, the calculation of the diffusion constant does not require the tensor
product of two algebras but only one quadratic algebra. After simplifying equation (74), one
is led to

� = αL−P (1 − α)P(
L

P

)2

{
NL,PM2L−1,2P−1 −ML,PN2L−1,2P−1

− P

L
(NL,PM2L,2P −ML,PN2L,2P )

}
− αL−P (1 − α)P(

L

P

)2 ML,PNL,P

×
{
(1 − α)ML−1,P−1 − αNL−1,P−1 − P

L
((1 − α)ML,P − αNL,P )

}
. (75)

5.2. Relation with the Bethe ansatz

We now prove that the formula (67) for the diffusion constant agrees with that derived using
the Bethe ansatz in [34]. Writing the binomial coefficient as a contour integral,(

L

P

)
=
∮

1

zL

(z− 1)P+1

dz

2iπ
(76)

we find

ML,P = α

∮
1, 1
α

zL+1

(z− 1)P+1(αz − 1)

dz

2iπ

and

NL,P = β

∮
1

zL+1

(z− 1)P+1(1 − (1 − β)z)

dz

2iπ
. (77)

These two formulae allow us to find integral representations for XL,P , M̃L,P and ÑL,P . We
deduce finally that UL,P , defined in equation (69), is given by

UL,P =
∮

1, 1
α

zL

(z− 1)P (αz − 1)2(1 − (1 − β)z)2

dz

2iπ
. (78)

Substituting this relation in equations (68) and (67) our expression for � agrees with that
of [34]. We recall the behaviour of� in different parts of the phase diagram [34]:

• If ρ < β and ρ < 1 − α, or if β < ρ and 1 − α < ρ, � → ρ(1−ρ)
|ρ−ρ| , where ρ is equal to

α or 1 − β respectively. In the limit of large systems, the defect has a normal diffusive
behaviour. This contrasts with the subdiffusive behaviour (with exponent 1

3 ) of a real hole
or a real first-class particle in the ASEP [31].

• For 1 − α < ρ < β, the defect is similar to a second-class particle [21] and
shows a superdiffusive behaviour in the limit of large systems. A finite size scaling
argument, using that � scales as L1/2, shows that the corresponding diffusion exponent
is 2

3 .
• In the shock phase, β < ρ < 1 − α, the shock has a normal diffusive behaviour with
� → α(1−α)+β(1−β)

1−α−β . This value of the diffusion constant can be understood by considering
the shock as a random walker between a phase of low density β and a phase of high density
1 − α.
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5.3. Relation with correlation functions

Let us consider the following (time-integrated) unequal time correlation function in the steady
state:

ψ(C0) =
∫ ∞

0
(〈η〉 − 〈η(t)|C0〉) dt where η = α(1 − τ1)− βτL. (79)

This quantity represents a numerical function associated with a configuration C0. Using the
equality ∑

C0

〈τi(t)|C0〉p(C0) = 〈τi〉

we derive ∑
C0

ψ(C0)p(C0) = 0. (80)

Besides, we recall that for any site i,

〈τi(t)|C1〉 =
∑
C
τi(C)Pt (C|C1). (81)

Hence, we deduce∑
C1

〈τi(t)|C1〉M(C1, C0) =
∑
C,C1

τi(C)Pt(C|C1)M(C1, C0) =
∑
C
τi(C)

dPt(C|C0)

dt
(82)

where we have used the backward form of the master equation (2). Taking the large time
limit of equation (82) and recalling that sum over a column of the Markov matrix identically
vanishes, we show that∑

C1

〈τi |C1〉M(C1, C0) =
∑
C,C1

τi(C)p(C)M(C1, C0) = 0. (83)

From equations (82) and (83), we deduce∑
C1

∫ ∞

0
(〈τi〉 − 〈τi(t)|C1〉) dtM(C1, C0) =

∑
C1

τi(C1)

∫ ∞

0

dPt(C1|C0)

dt

=
∑
C1

τi(C1)
(
p(C1)− δC1,C0

) = 〈τi〉 − τi(C0). (84)

Thus the correlation function ψ satisfies the following equation:∑
C1

ψ(C1)M(C1, C0) = α〈1 − τ1〉 − β〈τL〉 − α(1 − τ1(C0)) + βτL(C0). (85)

This equation is the same as equation (28) satisfied by the generalized weights s(C). Thus from
equations (79) and (80), we deduce the relation between generalized weights and correlation
functions,

s(C0)−
∑
C0

s(C0)p(C0) =
∫ ∞

0
(〈η〉 − 〈η(t)|C0〉) dt . (86)

Substituting this expression in equation (31), the diffusion constant can be expressed as a
linear combination of correlation functions,

� = J + 2
∑
C1

∫ ∞

0
(〈η〉 − 〈η(t)|C1〉) f (C1) dt (87)
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with

J =
∑
C0,C1

(M1(C1, C0) + M−1(C1, C0))p(C0)

and (88)

f (C1) =
∑
C0

(M1(C1, C0)− M−1(C1, C0))p(C0).

In general, expression (87) cannot be reduced to a linear combination of two time correlation
functions in the stationary state [8]. However, when α + β = 1, the stationary probability is
uniform and this implies that

f (C1) = {α(1 − τL(C1))− βτ1(C1)}
(
L

P

)−1

. (89)

Then, equation (87) becomes

� = (L− 2P)α + P

L
+ 2

∫ ∞

0

{(
α − P

L

)2

− 〈[α(1 − τ1(t))− βτL(t)]

× [α(1 − τL(0))− βτ1(0)]〉
}

dt . (90)

6. Conclusion

In this work, we have shown that the diffusion constant of an impurity in the ASEP can
be calculated by using an extension of the matrix approach. We have also obtained matrix
expressions for a set of unequal time correlation functions. Hence, for the ASEP, the matrix
method is a versatile tool that allows us to calculate stationary state properties as well as
non-stationary properties. One advantage of the matrix technique is that it provides closed
expressions for properties of a given configuration and not for global quantities only, e.g. the
stationary probability or the generalized weight of a configuration when expressed as a matrix
element can be calculated without referring to other configurations. This contrasts with the
Bethe ansatz approach, in which the eigenvalues of the Markov matrix are determined by a
set of coupled nonlinear polynomial equations. Although the diffusion constant, given as a
symmetric combination of these eigenvalues, can be calculated without solving explicitly these
equations, the eigenvectors of the Markov matrix cannot be expressed in a simple manner;
therefore, finding correlation functions from the Bethe ansatz is usually a formidable task.

The matrix ansatz and the Bethe ansatz are complementary techniques. Nevertheless,
they seem to be intimately related [36, 37]. One of our goals in studying this problem was to
find a system with a non-trivial stationary state where both methods apply and can be related
to each other in a systematic manner. We believe that a matrix ansatz exists for any ASEP
problem solved by the Bethe ansatz; in particular, it would be very interesting to understand
how the matrix method can be extended to find all moments of the time-integrated current in
the pure ASEP, which were calculated in [38] using the Bethe ansatz. Certainly, for calculating
higher moments, multiple tensor products of quadratic algebras, analogous to those used for
ASEP with multiple species [24], will be involved. The ASEP with open boundaries provides
the example of an integrable system [17] for which the matrix method allows us to calculate
the steady state [15] and the fluctuations of the current [33]. However, due to the lack of
a reference state, it has not been possible to perform a Bethe ansatz for this system and the
calculation of higher order fluctuations and of large deviation functions is still out of reach.
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Appendix A. Some useful combinatorial identities

In order to calculate the normalization factor ZL,P we introduced generalized binomial
coefficients ML,P ,NL,P and XL,P . In this appendix, we give some useful identities that
are satisfied by these functions:

ML,P =
(
L

P

)
+

1

α

∞∑
k=0

ak
(

L

P + k + 1

)
=
(
L

P

)
+

1

α
ML−1,P

= 1

1 − α
ML−1,P−1 − α

1 − α

(
L

P

)
= 1 − α

α
ML,P+1 +

(
L + 1
P + 1

)
(A1)

NL,P =
(
L

P

)
+

1

β

∞∑
k=0

bk
(

L

P − k − 1

)
=
(
L

P

)
+

1

β
NL−1,P−1

= 1

1 − β
NL−1,P − β

1 − β

(
L

P

)
= 1 − β

β
NL,P−1 +

(
L + 1
P

)
(A2)

XL,P = 1

1 − α − β

(
ML−1,P−1 +

1 − β

β
NL−1,P−1

)

= 1

1 − α − β

(
1 − α

α
ML−1,P + NL−1,P

)

= 1

1 − α − β

(
1

α
ML−2,P−1 +

1

β
NL−2,P−1

)
(A3)

ML,P = αβ

(
1 − β

β
XL+1,P − XL+1,P+1

)
= αXL+1,P − αβXL+2,P+1 (A4)

NL,P = αβ

(
1 − α

α
XL+1,P+1 −XL+1,P

)
= βXL+1,P+1 − αβXL+2,P+1. (A5)

If we eliminate NL,P from equation (19) by using equation (A5), we obtain

ZL,P = αβ(1 − α − β)(XL+1,P+1XL,P−1 −XL+1,PXL,P )

= αβ(1 − α − β)
(
XL+2,P+1XL,P−1 −X2

L+1,P

)
= αβ(1 − α − β)(XL+1,PXL,P+1 −XL+1,P+1XL,P )

= αβ(1 − α − β)
(
XL+2,P+1XL,P+1 − X2

L+1,P+1

)
(A6)

other equivalent identities can be derived using the Pascal triangle relations for XL,P . We
shall also need the following relations:

M̃L,P =
∞∑
k=1

ak−1ML,P+k = ML−1,P +
1

α
M̃L−1,P

= 1

1 − α
M̃L−1,P−1 − α

1 − α
ML−1,P = 1 − α

α
M̃L,P+1 +ML,P+1 (A7)
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ÑL,P =
∞∑
k=1

bk−1NL,P−k = NL−1,P−1 +
1

β
ÑL−1,P−1

= 1

1 − β
ÑL−1,P − β

1 − β
NL−1,P−1 = 1 − β

β
ÑL,P−1 + NL,P−1. (A8)

We also have the following relations between XL,P and ZL,P :

ZL−1,PXL,P + ZL−1,P−1XL,P+1 = ZL,PXL−1,P (A9)

ZL−1,PXL,P−1 + ZL−1,P−1XL,P = ZL,PXL−1,P−1. (A10)

These relations lead to

vXL,P − XL−1,P = −ZL−1,P−1

ZL,P
XL+1,P+1 (A11)

vXL,P + XL−1,P−1 = ZL−1,P

ZL,P
XL+1,P (A12)

vXL,P−1 −XL−1,P−1 = −ZL−1,P−1

ZL,P
XL+1,P (A13)

vXL,P+1 + XL−1,P = ZL−1,P

ZL,P
XL+1,P+1. (A14)

Appendix B. Expressions of the traces and derivation of equation (66)

In this appendix, we give the expressions of the traces that appear in formula (50) and we
derive equation (66). All the traces can be calculated in a way similar to that explained in
section 4.2. We only give the results here and as in section 4.2 we write the singular term
when t → 1 and the principal value of the trace at t = 1. Thus we have

1

κ2
Tr[(A⊗DNN)GL−1,P ]

= 1

κ2
Tr[(A⊗ [D,N ]N)GL−1,P ] +

1

κ2
Tr[(A⊗ NDN)GL−1,P ]

= ZL−1,PNL,P

κ2(1 − t)
− ZL−1,PNL−1,P−1

κ2
+ αβ

∞∑
y=1

{(XL−1,PML−1,P+y

−XL,PML−2,P+y)ÑL,P−y+1 − (XL−1,P+1ML−1,P+y

−XL,P+1ML−2,P+y)ÑL,P−y} (B1)

1

κ2
Tr[(A⊗ NNE)GL−1,P−1] = ZL−1,P−1NL,P

κ2(1 − t)
+ αβ

∞∑
y=1

{(XL−1,P−1ML−1,P+y−1

−XL,P−1ML−2,P+y−1)ÑL,P−y+1 − (XL−1,PML−1,P+y−1

−XL,PML−2,P+y−1)ÑL,P−y}. (B2)
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The calculation of the other three traces that involve the M matrix is simplified if the
matrix M acts on the ket, i.e. if M is on the left of N . Thus we have

1

κ2
Tr[(A⊗ NM)GL,P ]

= 1

κ2
Tr[A⊗ (NM −MN )GL,P ] +

1

κ2
Tr[(A⊗MN )GL,P ]

= ZL,PML,P

κ2(1 − t)
− ZL,P M̃L−1,P−1

ακ2
+ αβ

∞∑
y=1

{(XL,PNL,P−y

−XL+1,P+1NL−1,P−y−1)M̃L,P+y−1 − (XL,P−1NL,P−y
−XL+1,PNL−1,P−y−1)M̃L,P+y} (B3)

1

κ2
Tr[(A⊗DNM)GL−1,P ]

= 1

κ2
Tr[(A⊗D[N ,M])GL−1,P ] +

1

κ2
Tr[(A⊗DMN )GL−1,P ]

= ZL−1,PML,P

κ2(1 − t)
− ZL−1,P M̃L−1,P−1

ακ2
+ αβ

∞∑
y=1

{(XL−1,PNL−1,P−y

−XL,P+1NL−2,P−y−1)M̃L,P+y−1

− (XL−1,P−1NL−1,P−y − XL,PNL−2,P−y−1)M̃L,P+y} (B4)

1

κ2
Tr[(A⊗ NME)GL−1,P−1]

= 1

κ2
Tr[(A⊗ [N ,ME])GL−1,P−1] +

1

κ2
Tr[(A⊗MEN )GL−1,P−1]

= ZL−1,P−1ML,P

κ2(1 − t)
− ZL−1,P−1M̃L−1,P−1

ακ2
− ZL−1,P−1ML−1,P

κ2

+αβ
∞∑
y=1

{(XL−1,P−1NL−1,P−y−1 −XL,PNL−2,P−y−2)M̃L,P+y−1

− (XL−1,P−2NL−1,P−y−1 −XL,P−1NL−2,P−y−2)M̃L,P+y}. (B5)

In order to derive expression (66) for the diffusion constant, we insert equations (65) and
(B1) to (B5) in formula (50). First, we remark that when we take the linear combination
cn Tr[(A⊗NN)GL,P ] + cm Tr[(A⊗NM)GL,P ] the singular terms appearing in equations (65)
and (B3) cancel out. Similarly, all other singular terms of the type 1/(1 − t) cancel out from
formula (50).

We now consider the terms that are independent of y. The terms containing the factor
M̃L−1,P−1 cancel out: indeed inserting them in equation (50) and collecting them, we obtain

2cm
ακ2ZL,P

(vZL,P − ZL−1,P + ZL−1,P−1)M̃L−1,P−1. (B6)

Using the formula (8) for the speed v, this expression is found to be equal to zero. The other
y independent terms add up with the first term on the right-hand side of equation (50) and we
group them together as follows:
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ZL−1,P + ZL−1,P−1

ZL,P
+

2

ZL,P
(cmZL−1,P−1ML−1,P − cnZL−1,PNL−1,P−1)

= 1

Z2
L,P

(ZL−1,P (ZL,P + 2ML,PNL−1,P−1) + ZL−1,P−1(ZL,P + 2ML−1,PNL,P ))

= 1

Z2
L,P

((ML−2,P−1NL−1,P −ML−1,PNL−2,P−1)(ML−1,P−1NL,P

+ML,PNL−1,P−1)+ (ML−1,P−1NL−2,P−1 −ML−2,P−1NL−1,P−1)(ML,PNL−1,P

+ML−1,PNL,P ))

= 1

ZL,P
(ML,PNL−2,P−1 +NL,PML−2,P−1). (B7)

We have used here the formula (42) for cm and cn, and equations (20).
We complete the derivation of equation (66) from equation (50) by adding up the

y-dependent terms. Considering first the traces that are multiplied by 2cn/ZL,P in
equation (50), we have to evaluate the expression κ2(−v equation (65) + equation (B1) −
equation (B2)), which is equal to (leaving aside, for ease of writing, a multiplicative factor
α + β − 1 and the symbol

∑∞
y=1)

−v(XL,PML,P+y −XL+1,PML−1,P+y)ÑL,P−y+1 + v(XL,P+1ML,P+y −XL+1,P+1ML−1,P+y)

× ÑL,P−y + (XL−1,PML−1,P+y −XL,PML−2,P+y)ÑL,P−y+1

− (XL−1,P+1ML−1,P+y −XL,P+1ML−2,P+y)ÑL,P−y − (XL−1,P−1ML−1,P+y−1

−XL,P−1ML−2,P+y−1)ÑL,P−y+1 + (XL−1,PML−1,P+y−1

−XL,PML−2,P+y−1)ÑL,P−y. (B8)

Collecting the terms that have a common factor ÑL,P−y+1 and using the Pascal recursion
relation, we obtain

−vXL,P (ML−1,P+y +ML−1,P+y−1) + vXL+1,PML−1,P+y +XL−1,PML−1,P+y

−XL,P (ML−1,P+y −ML−2,P+y−1)−XL−1,P−1ML−1,P+y−1

+XL,P−1ML−2,P+y−1

= ML−1,P+y(vXL,P−1 −XL−1,P−1)−ML−1,P+y−1(vXL,P +XL−1,P−1)

+XL+1,PML−2,P+y−1

= XL+1,P

ZL,P
(ZL,PML−2,P+y−1 − ZL−1,PML−1,P+y−1 − ZL−1,P−1ML−1,P+y) (B9)

where we have used equations (A12) and (A13) to derive the last equality. Similarly, the terms
with a common factor ÑL,P−y in equation (B8) are equal to

vXL,P+1(ML−1,P+y +ML−1,P+y−1)− vXL+1,P+1ML−1,P+y − XL−1,P+1ML−1,P+y +XL,P+1

× (ML−1,P+y −ML−2,P+y−1) + XL−1,PML−1,P+y−1 −XL,PML−2,P+y−1

= ML−1,P+y(−vXL,P +XL−1,P ) +ML−1,P+y−1(vXL,P+1 +XL−1,P )

−XL+1,P+1ML−2,P+y−1

= −XL+1,P+1

ZL,P
(ZL,PML−2,P+y−1 − ZL−1,PML−1,P+y−1 − ZL−1,P−1ML−1,P+y)

(B10)

where we have used equations (A11) and (A14) to derive the last equality. Substituting
equations (B9) and (B10) in equation (B8), we obtain the expression that appears with the
multiplicative factor cn in equation (66). The expression with the multiplicative factor cm in
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equation (66) is obtained from equations (50) and (B3), (B4) and (B5) following the same
procedure. This completes the derivation of equation (66).

Appendix C. Proof of equation (67)

We first note that the generalized combinatorial functions defined in section 2.3 can be
interpreted as power series coefficients thanks to the following identities between functions of
the formal variable z:

+∞∑
P=−∞

zPML,P = (z + 1)L+1

z− a
(C1)

+∞∑
P=−∞

zPNL,P = (z + 1)L+1

1 − bz
(C2)

+∞∑
P=−∞

zPXL,P+1 = − 1

αβ

(z + 1)L

(z− a)(1 − bz)
. (C3)

Equation (C1), for example, is obtained by using expression (14) for ML,P and summing
explicitly the series thus obtained:

+∞∑
P=−∞

ML,P z
P =

∞∑
k=0

ak

zk+1

+∞∑
P=−∞

(
L + 1

P + k + 1

)
zP+k+1 = (z + 1)L+1

z− a
. (C4)

Taking the product of the series (C1) and (C2) and comparing the result with equation (C3),
we deduce that

∞∑
k=−∞

ML1,P1+kNL2,P2−k = −αβXL1+L2+2,P1+P2+1. (C5)

Taking the derivative of this expression with respect to a and b respectively, we obtain
∞∑

k=−∞
M̃L1,P1+kNL2,P2−k = 1

κ2
(−α(1 − β)XL1+L2+2,P1+P2+1 + M̃L1+L2+1,P1+P2) (C6)

∞∑
k=−∞

ML1,P1+kÑL2,P2−k = 1

κ2
(−β(1 − α)XL1+L2+2,P1+P2+1 + ÑL1+L2+1,P1+P2). (C7)

It should be noted that the summation variable y in sums that appear in expression (66)
for the diffusion constant runs from 1 to ∞ and not from −∞ to ∞. Therefore we must, first
of all, symmetrize the sums involved in equation (66) in order to be able to evaluate them with
the help of equations (C5), (C6) and (C7). Using equations (A4) and (A5), we write

ML,P+yNL,P−y = (αβ)2(abXL+1,P+yXL+1,P−y+1 − aXL+1,P+y+1XL+1,P−y+1

− bXL+1,P+yXL+1,P−y +XL+1,P+y+1XL+1,P−y). (C8)

Thanks to this decomposition, the sum
∑∞

y=1 ML,P+yNL,P−y can be symmetrized. Indeed, we
can write

∞∑
y=1

XL+1,P+yXL+1,P−y+1 =
0∑

z=−∞
XL+1,P−z+1XL+1,P+z = 1

2

∞∑
k=−∞

XL+1,P+kXL+1,P−k+1 (C9)
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where the first equality is obtained by setting z = 1 − y and the second equality results from
the fact that the sums over y and z add up to the (complete) sum over the whole range of k,
remembering that y, z and k are dummy variables. Similarly, we have

∞∑
y=1

XL+1,P+y+1XL+1,P−y+1 = 1

2

∞∑
y=−∞

XL+1,P+y+1XL+1,P−y+1 − 1

2
X2
L+1,P+1 (C10)

∞∑
y=1

XL+1,P+yXL+1,P−y = 1

2

∞∑
y=−∞

XL+1,P+yXL+1,P−y − 1

2
X2
L+1,P (C11)

∞∑
y=1

XL+1,P+y+1XL+1,P−y = 1

2

∞∑
y=−∞

XL+1,P+y+1XL+1,P−y −XL+1,PXL+1,P+1. (C12)

The proof of these equalities is similar to that of equation (C9), though we must be careful
about the boundary terms. Now, from equations (C8) to (C12), we deduce that

∞∑
y=1

ML,P+yNL,P−y

= 1

2

∞∑
y=−∞

ML,P+yNL,P−y +
(αβ)2

2

(
aX2

L+1,P+1 + bX2
L+1,P − 2XL+1,PXL+1,P+1

)

= −αβ
2
X2L+2,2P+1 +

αβ

2
(NL,PXL+1,P+1 +ML,PXL+1,P )

= −αβ
2
X2L+2,2P+1 − 1

2(1 − ab)

(
bN2

L,P + 2ML,PNL,P + aM2
L,P

)
(C13)

where the second equality results from equations (C5), (A4) and (A5) and the last equality
results from equation (A3).

Differentiating equation (C13) with respect to a we obtain
∞∑
y=1

M̃L,P+yNL,P−y = 1

2

∞∑
y=−∞

M̃L,P+yNL,P−y + αβXL+1,P M̃L,P − α2β2

2
X2
L+1,P+1. (C14)

In the following calculations, we shall need an equivalent form for equation (C14), obtained by
writing M̃L,P = 1

α
M̃L−1,P +ML−1,P (see equation (A7)) and expressingML−1,P as a function

of X (see equation (A4)):
∞∑
y=1

M̃L,P+yNL,P−y = 1

2

∞∑
y=−∞

M̃L,P+yNL,P−y + βXL+1,P M̃L−1,P

−α
2β2

2

(
X2
L+1,P+1 − 2

β
XL+1,PXL,P + 2XL+1,P+1XL+1,P

)
. (C15)

Now, deriving equation (C13) with respect to b, we obtain
∞∑
y=1

ML,P+yÑL,P−y = 1

2

∞∑
y=−∞

ML,P+yÑL,P−y + αβXL+1,P+1ÑL,P − α2β2

2
X2
L+1,P . (C16)

Using a procedure similar to that used to derive equation (C13), we calculate the sum
∞∑
y=1

ML,P+y+1NL,P−y = 1

2

∞∑
y=−∞

ML,P+y+1NL,P−y +
αβ

2
(1 − α − β)X2

L+1,P+1. (C17)
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Deriving equation (C17) with respect to a and b, we obtain
∞∑
y=1

M̃L,P+y−1NL,P−y = 1

2

∞∑
y=−∞

M̃L,P+y−1NL,P−y + αβXL+1,P M̃L,P−1

− α2β(1 − β)

2
X2
L+1,P (C18)

∞∑
y=1

ML,P+yÑL,P−y+1 = 1

2

∞∑
y=−∞

ML,P+yÑL,P−y+1 + αβXL+1,P+1ÑL,P+1

− α(1 − α)β2

2
X2
L+1,P+1 (C19)

= 1

2

∞∑
y=−∞

ML,P+yÑL,P−y+1 + αXL+1,P+1ÑL−1,P

− (αβ)2

2
XL+1,P+1

(
XL+1,P+1 +

XL,P −XL,P+1

α

)
. (C20)

The last equality was obtained by using ÑL,P+1 = ÑL−1,P /β + NL−1,P (equation (A8)) and
expressingNL−1,P as a function of X from equation (A5).

The twelve sums that appear in equation (66) can now be calculated using equations (C13)
to (C20) and we obtain

∞∑
y=1

ML−1,P+yÑL,P−y = 1

2

∞∑
y=−∞

ML−1,P+yÑL,P−y + αβXL,P+1ÑL,P

− α2β2

2

(
X2
L+1,P − 1 − α

α
X2
L,P −X2

L,P−1

)
(C21)

∞∑
y=1

ML−1,P+yÑL,P−y+1 = 1

2

∞∑
y=−∞

ML−1,P+yÑL,P−y+1 + αXL,P+1ÑL−1,P

− α2β2

2

(
X2
L+1,P+1 − 1

α
X2
L,P+1

)
(C22)

∞∑
y=1

ML−1,P+y−1ÑL,P−y = 1

2

∞∑
y=−∞

ML−1,P+y−1ÑL,P−y + αβXL,P ÑL,P

− α2β2

2

(
1 − α

α
X2
L,P +X2

L,P−1

)
(C23)

∞∑
y=1

ML−1,P+y−1ÑL,P−y+1 = 1

2

∞∑
y=−∞

ML−1,P+y−1ÑL,P−y+1 + αXL,P ÑL−1,P − α2β2

2

X2
L,P

α

(C24)

∞∑
y=1

ML−2,P+y−1ÑL,P−y = 1

2

∞∑
y=−∞

ML−2,P+y−1ÑL,P−y + αβXL−1,P ÑL,P

− α2β2

2

(
1 − α

α

(
X2
L−1,P −X2

L−1,P−1

)
+ 2XL,P−1XL−1,P−1

)
(C25)
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∞∑
y=1

ML−2,P+y−1ÑL,P−y+1 = 1

2

∞∑
y=−∞

ML−2,P+y−1ÑL,P−y+1 + αXL−1,P ÑL−1,P − α2β2

2
X2
L,P

(C26)∞∑
y=1

M̃L,P+yNL−1,P−y = 1

2

∞∑
y=−∞

M̃L−1,P+yNL,P−y + βXL,P M̃L−1,P

− α2β2

2

(
X2
L+1,P+1 − 1

β
X2
L,P

)
(C27)

∞∑
y=1

M̃L,P+y−1NL−1,P−y = 1

2

∞∑
y=−∞

M̃L,P+y−1NL−1,P−y + αβXL,P M̃L,P−1

− α2β2

2

(
1 − β

β
(X2

L+1,P −X2
L,P−1)− X2

L,P

)
(C28)

∞∑
y=1

M̃L,P+yNL−1,P−y−1 = 1

2

∞∑
y=−∞

M̃L,P+yNL−1,P−y−1 + βXL,P−1M̃L−1,P

− α2β

2

(
X2
L,P − 2XL,PXL+1,P + 2βXL+1,PXL+1,P+1

)
(C29)

∞∑
y=1

M̃L,P+y−1NL−1,P−y−1 = 1

2

∞∑
y=−∞

M̃L,P+y−1NL−1,P−y−1 + αβXL,P−1M̃L,P−1

− α2β2

2

(
X2
L,P +

1 − β

β
X2
L,P−1

)
(C30)

∞∑
y=1

M̃L,P+yNL−2,P−y−1 = 1

2

∞∑
y=−∞

M̃L,P+yNL−2,P−y−1 + βXL−1,P−1M̃L−1,P

− α2β2

2

(
−1 − β

β
X2
L,P + 2XL,PXL,P+1

)
(C31)

∞∑
y=1

M̃L,P+y−1NL−2,P−y−1 = 1

2

∞∑
y=−∞

M̃L,P+y−1NL−2,P−y−1 + αβXL−1,P−1M̃L,P−1

− α2β2

2

(
X2
L−1,P + 2

1 − β

β
XL−1,P−1XL,P−1 − X2

L−1,P−1

)
. (C32)

All the twelve sums (C21) to (C32) have a similar structure that is composed of three
parts: (i) 1

2 times the complete sum, that ranges from −∞ to ∞; (ii) a term made of a product
of an X function with an M̃ or an Ñ; (iii) a quadratic term in X. We shall show that when we
substitute these sums in the formula (66) for the diffusion constant, only the complete sums
contribute to the final result, i.e. the contribution of the terms of type (ii) vanishes identically
and the contribution of the terms of type (iii) cancels out with the first term on the right-hand
side of equation (66).

We start with the terms of type (ii). In equation (66) there are two distinct parts, the first
one with coefficient cn and the other one with coefficient cm. These two parts can be treated
separately. We consider the ‘cn part’ and evaluate, first of all, the contribution of the terms of
type (ii) i.e. containing an Ñ factor; we find

αXL+1,P ÑL−1,P (ZL,PXL−1,P − ZL−1,PXL,P − ZL−1,P−1XL,P+1)− αβXL+1,P+1ÑL,P

× (ZL,PXL−1,P − ZL−1,PXL,P − ZL−1,P−1XL,P+1) = 0 (C33)

where the term within braces vanishes thanks to equation (A9). Similarly, the terms of type
(ii) multiplied by cm (i.e. those containing an M̃ factor) cancel out.
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We now study the contribution to expression (66) of the terms quadratic in X. Collecting
all the terms and leaving aside, for the time being, the global factor α2β2

2 , we find

−ZL,P
{
XL+1,PX

2
L,P −XL+1,P+1

(−X2
L−1,P + 2XL,P−1XL−1,P−1 + X2

L−1,P−1

)− 1

α
XL+1,P+1

× (
X2
L−1,P −X2

L−1,P−1

)}
+ ZL−1,P

{
−XL+1,P+1

(
X2
L,P−1 − X2

L,P

)
+

1

α
X2
L,P

× (XL+1,P −XL+1,P+1)

}
+ ZL−1,P−1

{
XL+1,PX

2
L+1,P+1 −XL+1,P+1

× (
X2
L+1,P +X2

L,P −X2
L,P−1

)
+

1

α

(
XL+1,P+1X

2
L,P −XL+1,PX

2
L,P+1

)}
. (C34)

Here we have two categories of terms: terms with a multiplicative factor 1/α and terms without
the multiplicative factor 1/α. We first simplify the terms in expression (C34) that are not
multiplied by 1/α; writing, from Pascal’s relations, 2XL−1,P−1 = XL,P +XL−1,P−1 −XL−1,P

and X2
L−1,P−1 − X2

L−1,P = XL,P [XL−1,P−1 −XL−1,P ], we find

−ZL,P
{
XL+1,PX

2
L,P −XL+1,P+1(XL,P [XL−1,P−1 −XL−1,P ] + XL,P−1[XL,P + XL−1,P−1

−XL−1,P ])
}

+ ZL−1,PXL+1,P+1XL+1,P (XL,P −XL,P−1)

+ZL−1,P−1XL+1,P+1
(
XL+1,PXL+1,P+1 − X2

L+1,P −X2
L,P + (XL+1,P −XL,P )

2)
= − ZL,P

(
XL+1,PX

2
L,P −XL+1,P+1XL,P−1XL,P − XL+1,P+1XL+1,P (XL−1,P−1

−XL−1,P )
)

+XL+1,P+1XL+1,P (ZL−1,P (XL,P − XL,P−1) + ZL−1,P−1(XL+1,P+1

−2XL,P ))

= − ZL,PXL,P (XL+1,PXL,P −XL+1,P+1XL,P−1) +XL+1,P+1XL+1,P

× {ZL,P (XL−1,P−1 −XL−1,P ) + ZL−1,P (XL,P −XL,P−1)

+ZL−1,P−1(XL,P+1 − XL,P )}. (C35)

The expression within the braces in the last equality vanishes identically, thanks to
equations (A9) and (A10). Using the first equality in equation (A6), we find that expression
(C35)

(
multiplied by the factor α2β2

2 that was left aside while writing equation (C34)
)

reduces
to

− αβZ2
L,P

2(α + β − 1)
XL,P . (C36)

We now simplify the terms in equation (C34) that have the multiplicative factor 1/α:

ZL,P

α
XL+1,P+1XL,P (XL−1,P −XL−1,P−1) +

ZL−1,P

α
XL,P (XL+1,P (XL+1,P+1 − XL,P+1)

−XL+1,P+1(XL+1,P −XL,P−1)) +
ZL−1,P−1

α

(
XL+1,P+1X

2
L,P −XL+1,PX

2
L,P+1

)
= ZL,P

α
XL+1,P+1XL,P (XL−1,P −XL−1,P−1) +

1

α
(XL+1,P+1XL,P (ZL−1,PXL,P−1

+ZL−1,P−1XL,P )−XL+1,PXL,P+1(ZL−1,PXL,P + ZL−1,P−1XL,P+1))

= ZL,P

α
(XL+1,P+1XL,P (XL−1,P −XL−1,P−1) +XL+1,P+1XL,PXL−1,P−1

−XL+1,PXL,P+1XL−1,P )

= ZL,P

α
XL−1,P (XL+1,P+1XL,P −XL+1,PXL,P+1) (C37)



A matrix ansatz for the diffusion of an impurity in the asymmetric exclusion process 9729

where the last but one equality is obtained with the help of equations (A9) and (A10). Using
the third equality in equation (A6), we find that expression (C37), multiplied by the factor
α2β2

2 left aside while writing equation (C34), is equal to

αβZ2
L,P

2(α + β − 1)

XL−1,P

α
. (C38)

Adding the two terms (C36) and (C38), and inserting the result in equation (66) we obtain

2(α + β − 1)

Z2
L,P

cn
Z2
L,P

2(α + β − 1)
(βXL−1,P − αβXL,P ) = −ML,PNL−2,P−1

ZL,P
(C39)

where we have used equation (A5) and the expression of cn (equation (42)); this term cancels
out exactly the term ML,PNL−2,P−1/ZL,P appearing in equation (66).

In the same manner, the contribution of the terms quadratic in X that are multiplied by cm
exactly cancels out the term NL,PML−2,P−1/ZL,P appearing in equation (66).

Hence, expression (66) of the diffusion constant reduces to

� = (α + β − 1)

Z2
L,P

∞∑
y=−∞

{cn(ZL,PML−2,P+y−1 − ZL−1,PML−1,P+y−1 − ZL−1,P−1ML−1,P+y)

× (XL+1,P ÑL,P−y+1 −XL+1,P+1ÑL,P−y) + cm(ZL,PNL−2,P−y−1

−ZL−1,PNL−1,P−y−1 − ZL−1,P−1NL−1,P−y)(XL+1,P M̃L,P+y

−XL+1,P+1M̃L,P+y−1)}. (C40)

In this equation, the summation variable y runs from −∞ to ∞ and the sums are calculated
using formulae (C6) and (C7). We substitute the expressions for the sums in equation (C40)
and group together the terms which have the common multiplicative factor ZL,P , ZL−1,P or
ZL−1,P−1. After some simplifications, we obtain the final expression (67).
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